

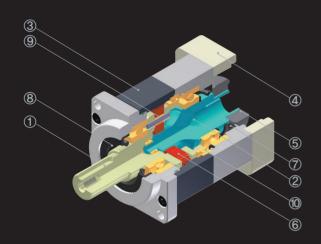

# PLANETARY GEARHEADS

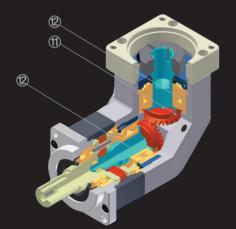


# Precision Planetary gear Heads - SPI/SPL Series

The development of SPI/SPL series precision planetary gear heads is a result of our experience over three decades in manufacturing a variety of gear heads for demanding and critical application.




# **Applicable Servo Motors**


- ▶ Nanotec electronics GmbH
- ▶ Crouzet
- LSIS Co..Ltd.
- ▶ Metronix Co.,Ltd.
- ► Samsung Electronics Co.,Ltd.
- ▶ Mitsubishi Electric Corp.
- ▶ Matsushita Electric Industrial Co.,Ltd.
- ➤ Yaskawa Electric Corp.
- ▶ Fuji Electric Co.,Ltd.
- ► Tamagawa Seiki Co.,Ltd.
- ► Fanuc Ltd.
- Nikki Denso Co.,Ltd.

- ► Sanyo Denki Co.,Ltd.
- ▶ Omron Corp.
- ▶ Miki Pully Co.,Ltd.
- ▶ Shinano Denki Co.,Ltd.

# Salient Features of SPI/SPL Series

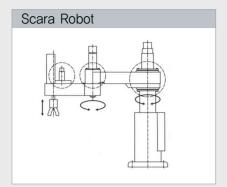
The Bohez's precision planetary Gear heads for servo motor application have high precision & high stiffness, providing function & performance of more than the customer's requirements.

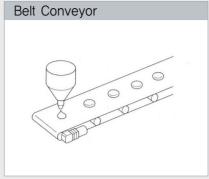


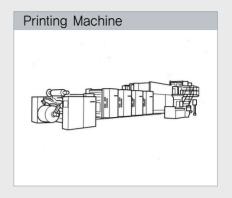


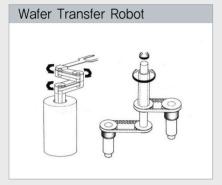
- ① OUTPUT SHAFT
- 2 INPUT GEAR SHAFT
- ③ OUTPUT CASE
- **4** INPUT ADAPTER FLANGE
- **⑤** CLAMP RING
- **6** PLANET GEAR
- ⑦ OIL SEAL (A)
- **8** OIL SEAL (B)
- **9 NEEDEL BEARING**
- **10** BALL BEARING
- **(f)** SPIRAL BEVEL GEAR
- **2** ANGULAR BALL BEARING

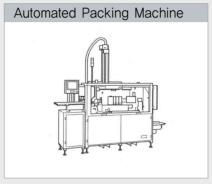
- SMALL, LIGHTWEIGHT, AND COMPACT DESIGN Compact design in consideration of small and light-weight servo motor!
- HIGH TORQUE CARRYING CAPACITY Structurally higher torque capacity compared to existing types enabling wide downsizing!
- HIGH STIFFNESS SYSTEM Integrated ring gear and input shaft made of special steel having high stiffness, sun gear both end support, reducer stiffness maximized by the integrated carrier design system of the output shaft!
- LOW INERTIA MOMENT Control improvement by the low inertia design!
- HIGH EFFICIENCY
   High transmission efficiency by more than 90%!
- HIGH PRECISION Low Backlash(about 10 arcmin) by applying the precision gear!
- ✓ LOW NOISE Under 60dB(A) of noise level!
- LONG LIFE

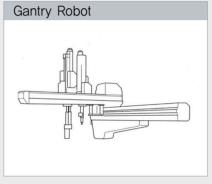

Service Life should be 10,000 hours based on Continuous operation! (Warranty Period: 1 year after the product is purchased)

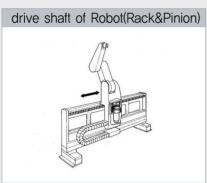

EXCELLENT SEAL SYSTEM

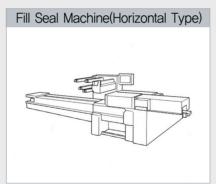

Safety of the use conditions secured with the sealing structure of high protective grade (IP65) by applying input/output shaft oil seal, case bonding surface O-Ring, and input shaft non-contact seal bearing!


- ◆ FREE MOUNTING DIRECTION, COMPATIBILITY Mounting available in all directions such as vertical, horizontal, sloped; mounting improved by the design having compatible mounting dimensions with competing products!
- SIMPLE MOUNTING ONTO VARIOUS SERVO MOTORS Coping with a range of servo motors of each manufacturer by applying an adapter flange for mounting a servo motor, triple—split collet clamp, and adapter bushing with simple mounting!

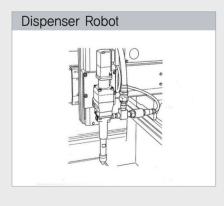

# **Applications**

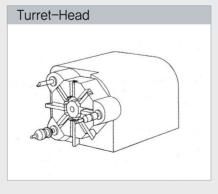


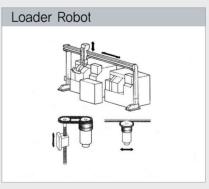
















- Transfer robots
- Robot peripherals
- FA units
- · Liquid glass return robots
- Semiconductor manufacturing devices
- Machine tools
- · Loader drive shafts

- Packing machine
- Woodworking machinery
- · Laser processing machinery
- Medical devices(CT)
- Monitoring & security cameras
- Bending Machinery
- Testing devices

- Measuring devices
- Pallet stackers
- Conveyors
- Extrusion machinery, blow-down devices etc. blow-down device etc.

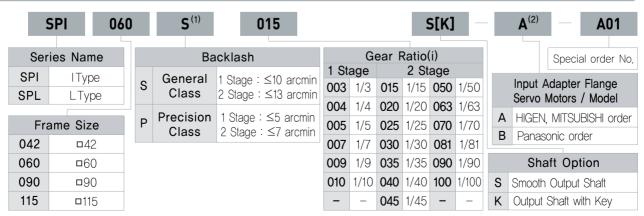
The SPI/SPL precision planetary gear head series meets the requirements of the most of the general-purpose servo applications.





# HIGH PRECISION PLANETARY GEARHEADS FOR SERVO MOTORS / SPI Series

- ► Small-sized, Light, Compact
- ► High Precision, High Durability
- ► High Efficiency
- ► Easy Mounting with various Servo Motors

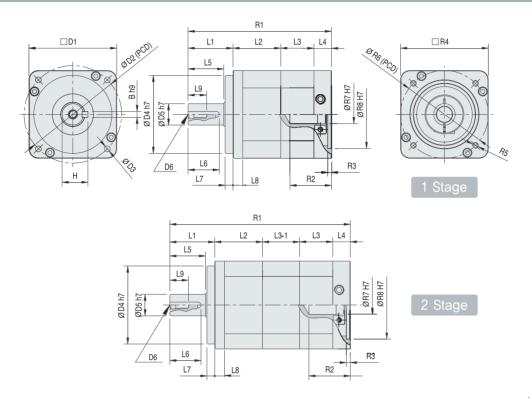

# **SPI Series**

# Specifications

| Description                               | l lad     | Chara | Detie     |                                               | Mode            | l No.             |         |
|-------------------------------------------|-----------|-------|-----------|-----------------------------------------------|-----------------|-------------------|---------|
| Description                               | Unit      | Stage | Ratio (1) | SPI 042                                       | SPI 060         | SPI 090           | SPI 115 |
|                                           |           |       | 3         | 15                                            | 46              | 110               | 190     |
|                                           |           |       | 4         | 14                                            | 35              | 102               | 205     |
|                                           |           |       | 5         | 19                                            | 42              | 112               | 235     |
|                                           |           | 1     | 7         | 14                                            | 38              | 100               | 210     |
|                                           |           |       | 9         | 14                                            | 34              | 96                | 160     |
|                                           |           |       | 10        | 10                                            | 29              | 80                | 191     |
|                                           |           |       | 15        | 15                                            | 46              | 110               | 190     |
|                                           |           |       | 20        | 14                                            | 35              | 102               | 205     |
|                                           |           |       | 25        | 19                                            | 42              | 112               | 235     |
| Nominal Output torque T <sub>2N</sub> (2) | Nm        |       | 30        | 15                                            | 46              | 110               | 190     |
|                                           |           |       | 35        | 19                                            | 42              | 112               | 235     |
|                                           |           |       | 40        | 14                                            | 35              | 102               | 205     |
|                                           |           | 2     | 45        | 14                                            | 34              | 96                | 160     |
|                                           |           |       | 50        | 19                                            | 42              | 115               | 235     |
|                                           |           |       | 63        | 14                                            | 38              | 100               | 210     |
|                                           |           |       | 70        | 14                                            | 38              | 100               | 210     |
|                                           |           |       | 81        | 14                                            | 34              | 96                | 160     |
|                                           |           |       | 90        | 14                                            | 34              | 96                | 160     |
|                                           |           |       | 100       | 10                                            | 29              | 80                | 191     |
| Max Acceleration torque T <sub>2B</sub>   | Nm        | 1,2   | 3~100     |                                               | 3 times of Nomi | nal Output torque |         |
| Nominal Input speed n <sub>1</sub>        | rpm       | 1,2   | 3~100     | 3,000                                         | 3,000           | 3,000             | 3,000   |
| Max, Input speed N <sub>1</sub>           | rpm       | 1,2   | 3~100     | 6,000                                         | 6,000           | 5,000             | 5,000   |
| Backlash (General Type)                   | arcmin    | 1     | 3~10      | ≤10                                           | ≤10             | ≤10               | ≤10     |
| Dacklasif (deficial Type)                 |           | 2     | 15~100    | ≤13                                           | ≤13             | ≤13               | ≤13     |
| Max. Radial load Fr max (2)               | N         | 1,2   | 3~100     | 400                                           | 1,100           | 2,400             | 4,000   |
| Max. Axial load Fa max (2)                | N         | 1,2   | 3~100     | 250                                           | 550             | 1,300             | 2,000   |
| Service life (2)                          | hr        | 1,2   | 3~100     | 10,000                                        | 10,000          | 10,000            | 10,000  |
| Noise level (3)                           | dB(A)     | 1,2   | 3~100     | ≤56                                           | ≤58             | ≤60               | ≤63     |
| Weight                                    | ka        | 1     | 3~10      | 0.5                                           | 1,2             | 3,2               | 7.2     |
| Weight                                    | kg        | 2     | 15~100    | 0.7                                           | 1.7             | 4.7               | 11.0    |
| Moment of inertia (4)                     | lea . om² | 1     | 3~10      | 0.05                                          | 0.25            | 1,1               | 5.1     |
| Moment of inertia (4)                     | kg·cm²    | 2     | 15~100    | 0.03                                          | 0.05            | 0.24              | 0.72    |
| Operating Temp. (5)                       | င         | 1,2   | 3~100     | -10~+90                                       |                 |                   |         |
| Lubrication                               |           | 1,2   | 3~100     | High temperature & Extreme pressure Lubricant |                 |                   |         |
| Mounting position                         |           | 1,2   | 3~100     | All directions                                |                 |                   |         |
| Efficiency n                              | %         | 1     | 3~10      |                                               |                 | ≥97               |         |
| Efficiency ŋ                              | 70        | 2     | 15~100    | ≥94                                           |                 |                   |         |
| Degree of protection                      |           | 1,2   | 3~100     |                                               | IF              | P 65              |         |

<sup>(1)</sup> Ratio(reduction gear ratio) = Nin / Nout (2) Output rotation (N2) 100rpm, Load acting in the middle of the output shaft, successive operation(S1), load coefficient(Ka) = 1 (3) Input rotation : 3,000rpm, measurement 1m distant from the surface to which the reducer is mounted under noload operation (background noise 21dB(A)) (4) Based on input shaft, representative value among reduction gear ratios (5) Surface temperature of the Output Case, range of ambient temperature (-10°C~40°C)

# How to mark type code and ordering code




<sup>(1)</sup> Precision grade is special specification.

<sup>\*\*</sup> Data of the above specification table indicate representative values and the specification may be changed without notice to improve product performance.

<sup>(2)</sup> For some models of the servo motor, the shape may differ from the Company's planetary reducer, therefore please check it again when placing an order.

# Planetary Gearheads



(Unit: mm)

| MODE | EL No.  | SPI 042  | SPI 060  | SPI 090   | SPI 115    |
|------|---------|----------|----------|-----------|------------|
| L1   |         | 24.5     | 37       | 46        | 65         |
| L2   |         | 28.5     | 36       | 49        | 59         |
| L3   | 1 Stage | 25.5     | 30       | 34        | 40         |
| L3-1 | 2 Stage | 25       | 26       | 38        | 50         |
| L4   |         | 13.5     | 18       | 18        | 42         |
| L5   |         | 19.5     | 29       | 36.5      | 51         |
| L6   |         | 16       | 25       | 32        | 45         |
| L7   |         | 4        | 7        | 8         | 12         |
| L8   |         | 7        | 8        | 10        | 14         |
| L9   |         | 13       | 13       | 19        | 28         |
| D1   |         | 42       | 60       | 90        | 115        |
| D2   |         | 50       | 70       | 100       | 130        |
| D3   |         | 3,4      | 5.5      | 6,5       | 9          |
| D4   | h7      | 35       | 50       | 80        | 110        |
| D5   | h7      | 13       | 16       | 22        | 32         |
| D6   |         | M4XP 0.7 | M5XP 0.8 | M8XP 1,25 | M12XP 1,75 |
| R1   | 1 Stage | 92       | 121      | 147       | 206        |
| R1-1 | 2 Stage | 117      | 147      | 188       | 256        |
| R2   |         | 27       | 32,5     | 42.5      | 63         |
| R3   |         | 3,5      | 4        | 4         | 7          |
| R4   | h7      | 42       | 60       | 90        | 130        |
| R5   |         | M4XP 0.7 | M5XP 0.8 | M6XP 1.0  | M8XP 1,25  |
| R6   |         | 46       | 70       | 90        | 145        |
| R7   | H7      | 8        | 14       | 19        | 24         |
| R8   | H7      | 30       | 50       | 70        | 110        |
| В    | h9      | 5        | 5        | 6         | 10         |
| Н    |         | 15       | 18       | 24.5      | 35         |

Note) 1. For product improvement, appearance, dimensions etc. may be changed without notice.

2. R1~R8 may vary according to the selected servo motor specification. (for a special order product)

<sup>3.</sup> Consult Bohez for the adaptations to your motorcombination and accordingly the 3D plan

# A list of applicable servo motors by reducer specification

# ■ A list of applicable servo motors by specification – 1

| Servo Motor<br>Model No.<br>Frame Size<br>of Gearheads | Nanotec                                                                                                                    | Crouzet      | METRONIX                                                             | SAMSUNG                                                                                                    | SANYO                                                                      |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| SPI 042                                                | ST41<br>SC41<br>ST42<br>SCA56<br>SCB56<br>ST59                                                                             | SQ57         | APM-SAR3A<br>APM-SAR5A<br>APM-SAR01A                                 | CSMT-A3 CSMT-A5 CSMT-01 CSMZ-A3 CSMZ-A5 CSMZ-O1                                                            | P30B04005<br>P30B04010<br>P50B05005<br>P50B05010                           |
| SPI 060                                                | SC60<br>ST60                                                                                                               | SQ57<br>SQ75 | APM-SB01A<br>APM-SB02A<br>APM-SB04A                                  | CSMT-02, 04<br>CSMR-01<br>CSMZ-02, 04<br>CSMQ-01                                                           | P30B06020<br>P30B06040<br>P50B05020<br>P50B07020<br>P50B07030<br>P50B07040 |
| SPI 090 SPL 090                                        | ST89                                                                                                                       | SQ75         | APM-SC04A, 06A<br>APM-SC03D, 05D<br>APM-SC08A, 10A<br>APM-SC06D, 07D | CSMT-02, 04<br>CSMT-06, 08<br>CSMT-10<br>CSMQ-02, 04<br>CSMZ-08                                            | P30B08075<br>P50B08050<br>P50B08075                                        |
| SPI 115                                                | CN09, CN15 CN22, CN30 KN06A, KN11 KN16, KN22 TN05, TN09 TN13, TN17 TF05, TF09, TF13 LN03, LN06 LN09, LN12 LF03, LF06, LF09 | SQ75         | APM-SE09A, 15A<br>APM-SE06D, 11D<br>APM-SE05G, 09G<br>APM-SE03M, 06M | CSMD-08, 10<br>CSMD-15, 20<br>CSMH-05, 10, 15<br>CSMS-10, 15, 20, 25<br>CSMF-04, 08, 15<br>CSMK-03, 06, 09 | P50B08100                                                                  |

Note) 1. See also [How to select a reducer 1] (10 Page) by servo motor capacity.

2. Check again specifications and dimensions of the servo motor of the maker after selecting the servo motor.

<sup>3.</sup> The model names of the above servo motors are arranged by reference to catalogues of each manufacturer, and for more details, contact Bohez

# Planetary Gearheads

# ■ A list of applicable servo motors by specification – 2

| Servo Motor<br>Model No,<br>Frame Size<br>of Gearheads | MITSUBISHI                                                                                         | PANASONIC                                                                                                                                               | YASKAWA                                                                                                                                                  | FUJI                                                                                                                                     |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| SPI 042                                                | HC-PQ<br>HC-KFS(MFS) 053<br>HC-KFS(MFS) 13<br>HA-FF053(B)                                          | MSMA-3A, 5A, 01A<br>MQMA-01<br>MSMA-022A                                                                                                                | SGMAH-A3, A5<br>SGMAH-01<br>SGM-A5, 01<br>SGMP-01                                                                                                        | GYS 500DC1<br>GYS 101DC1<br>GYS 101DC2<br>GYC 101DC1                                                                                     |
| SPI 060                                                | HC-PQ<br>HC-KFS(MFS) 23<br>HC-KFS(MFS) 43<br>HC-UFS 13<br>HA-FF23, 33, 43                          | MQMA, MSMA-02, 04<br>MSMA-022A<br>MSMA-042A                                                                                                             | SGMAH-02, 04<br>SGMPH-01, 02, 04<br>SGM-02, 04<br>SGMP-02, 04                                                                                            | GYC 101DC1<br>GYS 201DC1<br>GYS 401DC1<br>GYS 401DC2<br>GYC 201DC1<br>GYC 401DC1                                                         |
| SPI 090 SPL 090                                        | HC-KFS(MFS) 73<br>UC-UFS 23<br>UC-UFS 43<br>HA-FF 63                                               | MSMA-08                                                                                                                                                 | SGMAH-07, 08<br>SGMPH-02, 04, 08<br>SGM-08<br>SGMP-08                                                                                                    | GYC 201DC1<br>GYC 401DC1<br>GYC 751DC1<br>GYS 751DC1<br>GYS 751DC2                                                                       |
| SPI 115                                                | HC-SFS 81<br>HC-SFS 52~152<br>HC-SFS 53~153<br>HC-LFS 52, 102, 152<br>HC-RFS 103, 153<br>UC-UFS 73 | MSMA-10, 15, 20, 25<br>MSMA-302A1<br>MSMA-352A1<br>MDMA-08A1/D1<br>MDMA-10, 15, 20A1/D1<br>MGMA-03, 06, 09A1/D1<br>MFMA-04A1/D1<br>MHMA-05, 10, 15A1/D1 | SGMPH-08, 15<br>SGMGH-03, 05, 06, 09<br>(1,500rpm)<br>SGMGH-09 (1,000rpm)<br>SGMSH-13<br>SGMSH-10, 15, 20<br>SGMUH-10, 15<br>SGMUH-30, 40<br>SGMP-08, 15 | GYC 102DC1 GYA 501DC1 GYC 152DC1 GYC 202DC1 GYS 102DC1 GYS 152DC1 GYS 202DC1 GYS 202DC1 GYG 501, 751CC2 GYG 102CC2 GYG 501BC2 GYG 851BC2 |

# Reducer Selection

# ■ Check points for reducer selection

#### Selection of the desired Servo Motor



#### Reducer model selection



#### Check of Reducer and Servo Motor Spec



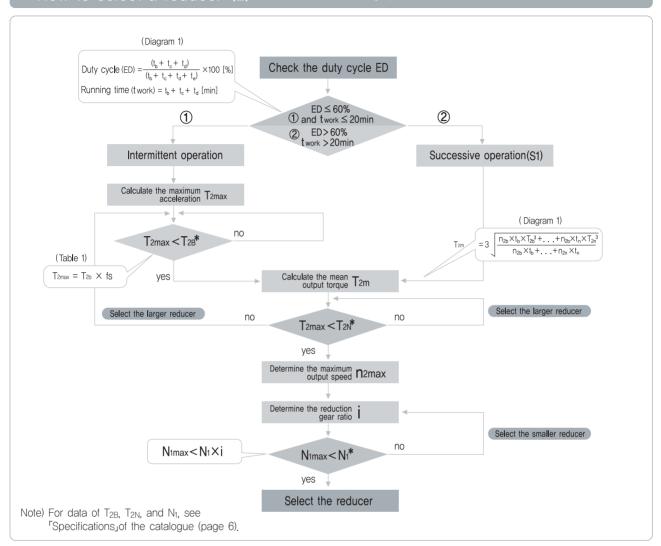
#### Check of other considerations

- 1) Select the Motor Brand.
- 2) Select the Motor Model No.
- 1) Select the Frame Size
- 2) Select the reduction gear ratio.
- 3 Select the Backlash.
- ① Check the dimensions (Consult Bohez for the 3D plan)
- 2 Check the reduction gear ratio spec.
  - ► External loads of the Output Unit (radial, trust load)
  - ► Rated output torque, maximum output torque
  - ▶ Nominal input RPM, maximum input RPM
  - ► Input shaft inertia moment
  - ▶ Weight
- 3 Check the Servo Motor Spec.
  - ► Nominal output
  - ► Rated torque
  - ► Maximum peak torque
  - ▶ Nominal RPM
  - ► Maximum RPM
  - ► Rotor inertia
- 4 Check the output torque with a reducer of the Servo Motor to be used.
- (5) Check if or not radial and trust load of the device to be applied is under a permissible level of the reducer.
- ⑥ Check the precision of the reducer according to the precision of position.
- ⑦ Check the use conditions (temperature, humidity, cleanness, etc.)

# ■ How to select a reducer ⟨1⟩ For simple selection with servo motor capacity and reduction gear ratio (based on Motor Input Speed 3,000rpm)

| Ratio       |           | 1 Stage |   |    | 2 Stage |    | Motor Mounting | Motor Shaft       |            |
|-------------|-----------|---------|---|----|---------|----|----------------|-------------------|------------|
| Motor Capa. | 3         | 5       | 9 | 15 | 25      | 45 | 81             | PCD (mm)          | Dia. (mm)  |
| 50W         |           |         |   |    |         |    |                | 45, 46, 60        | 6, 8, 11   |
| 100W        | SPI 042/  | SPL 042 |   |    |         |    |                | 45, 46, 60, 70    | 8, 11      |
| 200W        |           |         |   |    |         |    |                | 60, 70, 90        | 9, 11, 14  |
| 400W        | SPI 060/  | SPL 060 |   |    |         |    |                | 70, 90, 100, 115  | 10, 14, 16 |
| 750W        |           |         |   |    |         |    |                | 90, 100, 115, 145 | 16, 19     |
| 1,000W      |           |         |   |    |         |    |                | 100, 115, 145     | 16, 19, 24 |
| 1,500W      | SPI 090/S | SPL 090 |   |    |         |    |                | 115, 145          | 19, 22, 24 |
| 2,000W      |           |         |   |    |         |    |                | 115, 145          | 19, 22, 24 |
| 3,000W      | SPI 115/S | PL 115  |   |    |         |    |                | 115, 145          | 19, 22, 24 |

Note) 1. Thow to select a reducer <1>j is a reference for simple reducer selection, and if more exact reducer selection is required, see Thow to select a reducer <2>j.

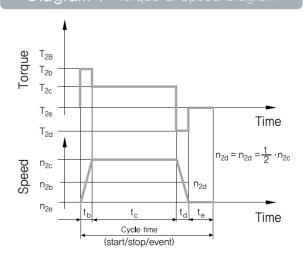

2. Whenever selecting a reducer, select a reducer within the range

(rated torque x reduction gear ratio of the Servo Motor< rated torque of the reducer), if possible.

3. The above Reducer Selection Table is based on up to 1/50 of reduction gear ratio. (For safe use of the servo motor, if a reducer having more than 1/50 of reduction gear ratio, contact the Company, and if possible, raise frame size of the reducer one step ahead.)

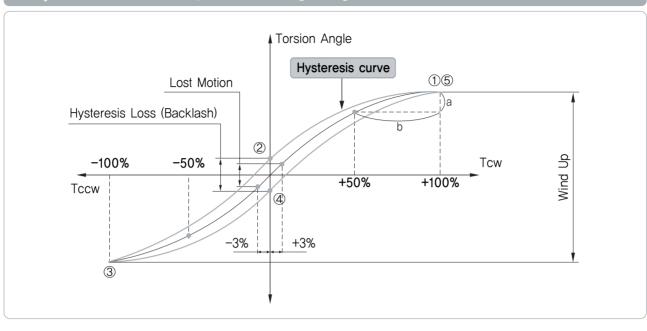
# Selection of Gearhead

# ■ How to select a reducer ⟨2⟩ For selection considering operation conditions




# ■ Table 1 fs Table of factors

| Number of Cycles/hr | fs*  |
|---------------------|------|
| 0~1,000             | 1    |
| 1,000~1,500         | 1,1  |
| 1,500~2,000         | 1,25 |
| 2,000~3,000         | 1,55 |
| 3,000~5,000         | 1,83 |


Note) fs (shock factor): Shock factor

#### ■ Diagram 1 Torque & Speed Diagram



# How to measure reducer backlash

# ■ Hysteresis curve Torque – torsion angle diagram



#### ■ Backlash Hysteresis Loss

In general, whenever measuring backlash, which indicates the level of a reducer, the value measured by giving 3% of rated output torque of the reducer toward both directions(±3%) should be read. That is, if the input shaft of the reducer is fixed and torque is given to the output part, torsion responding to torque is incurred in the output part.

① Normal rotation(rated output torque Tcw) ▶ ② Zero ▶ ③ Inverse rotation(rated output torque Tccw) ▶ ④ Zero ▶ ⑤ If torque values are gradually changed in the same sequence as normal rotation(rated output torque Tcw), the curve is drawn as shown in the figure [Hysteresis Curve].

As shown in the figure, ②④ value for the zero torque part of the hysteresis curve is called Hysteresis Loss, and for the Bohez's planetary reducer(SPI/SPL series), the amount of Hysteresis Loss is measured, and it is set as product backlash specification.

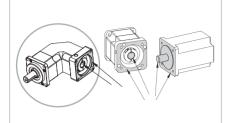
# ■ Lost Motion Rotational accuracy

Lost Motion indicates angle of torsion in the middle of hysteresis up/down curve width within  $\pm 3\%$  of rated output torque for backlash measurement. In general cases, Lost Motion including elastic deformation of power transmission system except Hysteresis Loss is indicated in a higher value.

# ■ Torsional Rigidity

Difference in angle of torsion, which is measured while the input shaft is fixed and each 50% and 100% of load torque are given to the output shaft, is expressed in a proportional slope, and torsional rigidity in Fig. [Hysteresis Curve] can be indicated in the following equation.

$$T_r = \frac{b}{a}$$


Tr: Torsional rigidity

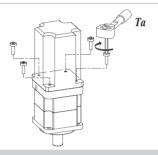
a: 50% of rated output torque

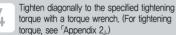
**b** : Difference in angle of torsion when each 50% and 100% of rated output torque are given to the output shaft

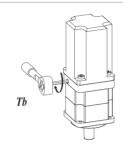
# How to mount the servo motor

# ■ Servo motor mounting For mounting with the servo motor, keep the following sequence

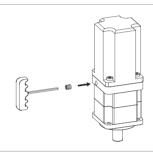






Clean the part to be mounted after checking the motor and reducer sizes.

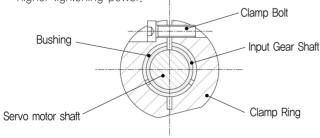
Loosen the screw plug from the adapter flange and adjust the position so that the clamp bolt can be seen. (For proper servo motor shaft fixation method, see Appendix 1<sub>J</sub>.)


When mounting onto the motor, closely adhere the adapter flange of the reducer and the motor mounting side and slightly tighten the clamping bolt so that the clamp ring not idle,

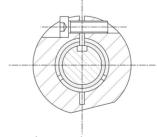







Tighten the clamp bolt to the specified tightening torque with a torque wrench. (For tightening torque, see 「Appendix 2」.)




Tighten again the screw plug

# ■ Appendix 1 Proper servo motor shaft fixation method

If the servo motor shaft has not a circular but key way, remove the key and make sure that the key way of the servo motor shaft and the clamp bolt of the reducer input shaft can be perpendicular as shown in Fig. B<sub>J</sub> at mounting. Also, arrange each slot position of the Clamp Ring, the Gear Shaft, and the Bushing in a line to get higher tightening power.



(Figure A) Annular shaft



(Figure B) Key way

# ■ Appendix 2 Bolt tightening torque

| Series Name       | For Mounting | on the Motor        | For the Clamp Ring |                     |  |
|-------------------|--------------|---------------------|--------------------|---------------------|--|
| Series Name       | Bolt Size    | Fastening Torque Ta | Bolt Size          | Fastening Torque Tb |  |
| SPI 042 / SPL 042 | M4           | 3.0 Nm              | M3                 | 2,1 Nm              |  |
| SPI 060 / SPL 060 | M5           | 5,8 Nm              | M5                 | 9.8 Nm              |  |
| SPI 090 / SPL 090 | M6           | 9,8 Nm              | M5                 | 9.8 Nm              |  |
| SPI 115 / SPL 115 | M8           | 19,6 Nm             | M8                 | 41.0 Nm             |  |

# Cautions at use and warranty

# Caution

#### Be careful of product handling.

· Be careful not to give an impact to the product with a hammer and not to cause damage from a drop at handling.

#### In case of directly connecting the product to the load side, pay attention to assembling.

- · Be careful of direct connection such as concentricity, parallel level, tension, etc. whenever connecting the product to the load side such as a belt, a chain, etc.
- · Be careful of handling the edge of the product and the key way of the output shaft. It may cause an injury.
- Do not put a hand or other foreign substance in a rotating shaft while the product drives. It may cause an injury.

#### Do not give an impact to the product.

· Be careful not to give an excessive impact whenever assembling a pulley, a coupling, a key, etc. to the product.

#### Do not exceed permissible torque at use.

· Do not give more than the instantaneous permissible maximum torque, It may cause troubles by bolts loosened on the tightening part, shaking, damage, etc.

#### Do not disassemble the product.

· Do neither disassemble nor reassemble the product. Otherwise the original performance may not be guaranteed.

#### If any abnormal condition is sensed, stop the system.

· If abnormal sound, vibration, abnormal heat, etc. occur, immediately stop the system. Otherwise it may adversely influence the system.

# Warranty

A WARRANTY PERIOD AND A WARRANTY LIMIT OF THE PRODUCT IS AS FOLLOWS.

#### 1 Warranty Period

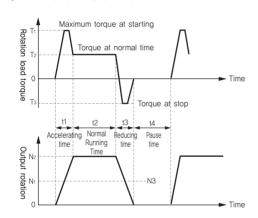
Either 18 months after the delivery or 12 months of an operation period for the product, which reaches earlier, should be applied on condition of use with operation, assembling, and lubrication specified by the Company.

#### 2 Warranty Limit

For a fault by a defect in Company's manufacturing during the above warranty period, repair or exchange of the product should be conducted under Company's responsibilities. However, the following cases are excluded from the Warranty Limit,

- ① Unsuitable handling or use by customers
- ② Remodeling or repair not by the company without permission
- 3 A fault resulting from other reasons except the product
- Such fault as attributable to natural disaster etc.,
   which is not the Company's responsibility

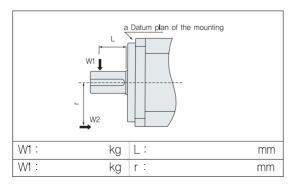
Warranty herein means warranty for the product.


Other losses (chance loss by loss of the machine & assembly man-hour, assembly & disassembly, and mounting costs) arising out of a failure of the product are beyond the range of Company's burdens.

# Request Information

# ■ To submit SPI/SPL product questions, simply fill out the following form

| Customer               | Company:    | Zip/Postal Codes :  | Name :  |            | Job Title: |
|------------------------|-------------|---------------------|---------|------------|------------|
|                        | TEL:        | FAX:                | E-mail: |            |            |
| Address                |             |                     | Country | :          |            |
| Operating Conditions   |             |                     |         |            |            |
| Machine Name           |             |                     |         |            |            |
| Application            |             |                     |         |            |            |
| Spec. of the Gearheads | SPI / SPL - | Reduction Ratio i = |         | Backlash : | arcmin     |


### 1. The Conditions of Load



|     | starting (Max.) | Normal | Stop(Max.) | Pause time |
|-----|-----------------|--------|------------|------------|
| N·m | T1              | T2     | T3         | -          |
| rpm | N1              | N2     | N3         | -          |
| sec | t1              | t2     | t3         | t4         |

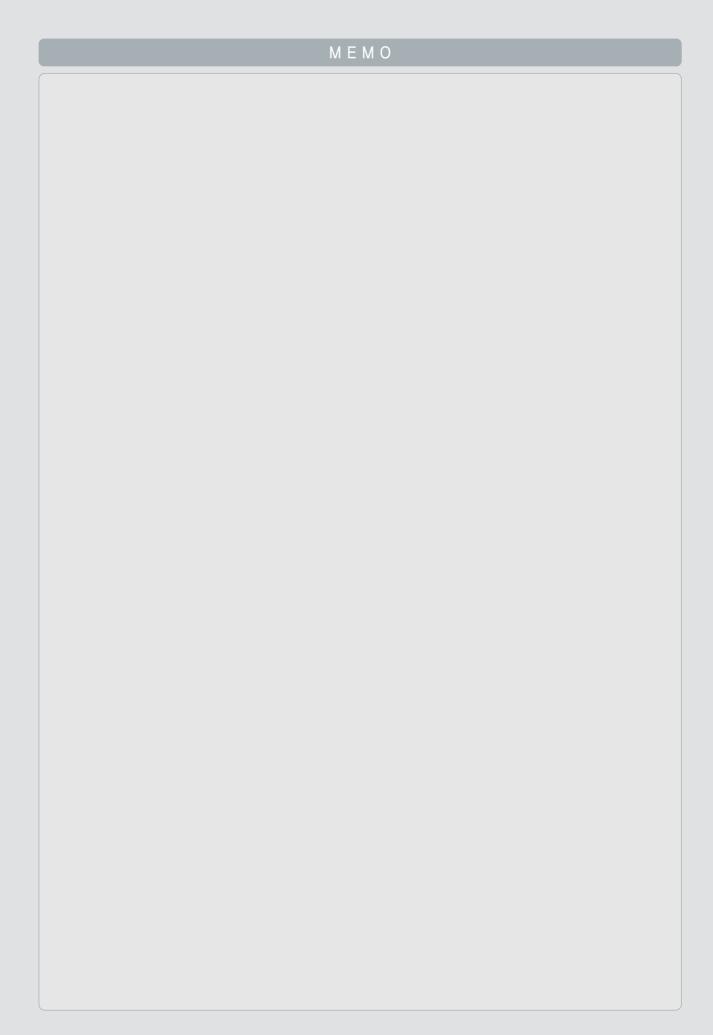
| Running Time | Cycle/day | Day/year | year |
|--------------|-----------|----------|------|
|--------------|-----------|----------|------|

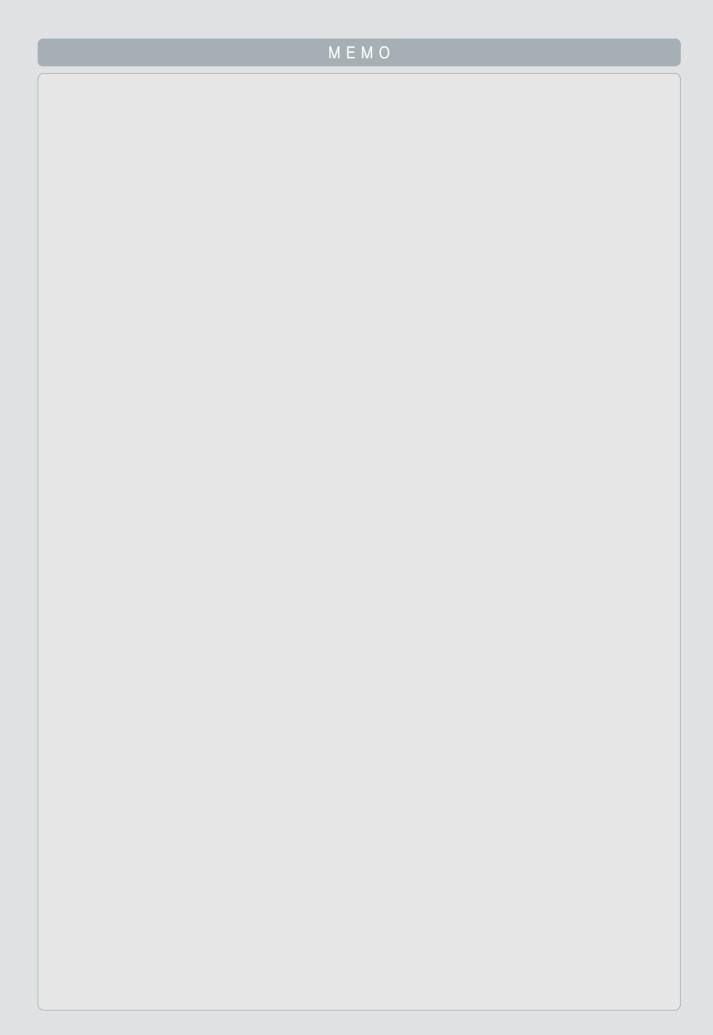
#### 2. The Load Conditions of Output Shaft

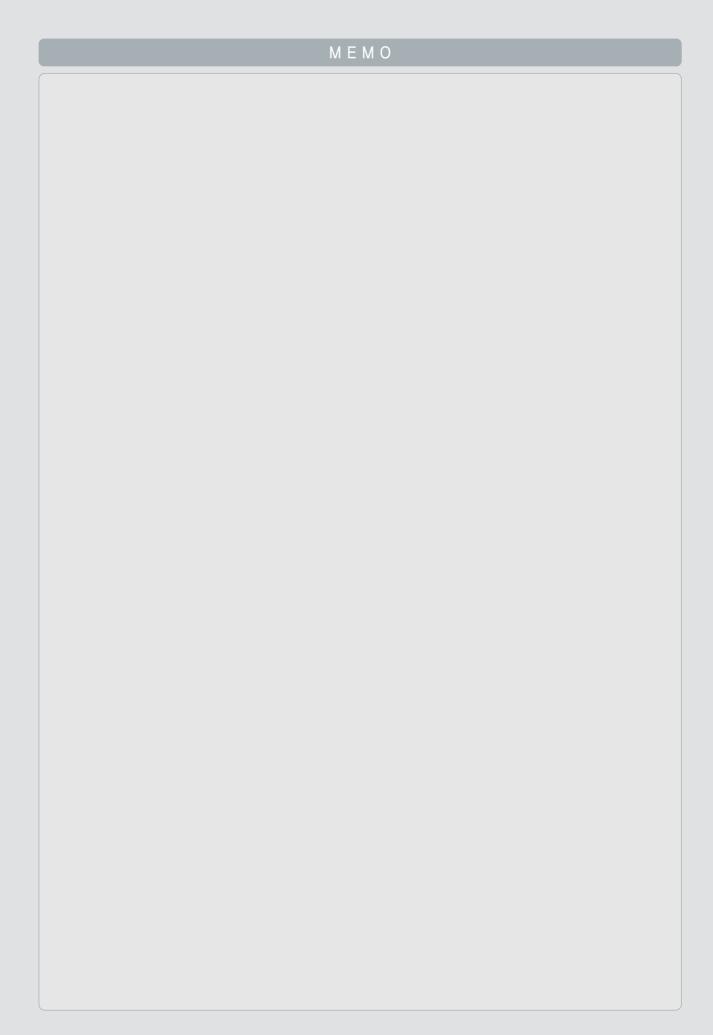


### 3. The Mounting Direction

| ☐ Horizontality ■☐ ☐■   | Verticality |  |
|-------------------------|-------------|--|
| The Outline figure of N | Mounting    |  |
|                         |             |  |
|                         |             |  |
|                         |             |  |
|                         |             |  |


## 4. The Specifications of Input Side


☐ Servo motor


| Capacity                |     |     | W   |
|-------------------------|-----|-----|-----|
| Nominal Torque          |     |     | N·m |
| Input Speed             |     |     | rpm |
| Output Shaft Dimensions | Ø = | , Q | mm  |

□ other (

| 5. | Others |  |  |  |
|----|--------|--|--|--|
| -  |        |  |  |  |
| -  |        |  |  |  |











# BOLEZ® LEADING IN MECHATRONICS

Boekzitting 10 9600 Ronse - Belgium www.bohez.com info@bohez.com Tel: +32 55 31 31 70